- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Tuller, Markus (2)
-
Ajami, Hoori (1)
-
Anderson, Ray G (1)
-
Babaeian, Ebrahim (1)
-
Berli, Markus (1)
-
Brookshire, E_N Jack (1)
-
Calleja, Sebastian (1)
-
Christenson, Clay G (1)
-
Daigh, Aaron_L M (1)
-
Flury, Markus (1)
-
Franklin, Shane (1)
-
Giovando, Jeremy (1)
-
Gohardoust, Mohammad R (1)
-
Green, Timothy R (1)
-
Heinse, Robert (1)
-
Heitman, Josh (1)
-
Huang, Jingyi (1)
-
Jin, Yan (1)
-
Kelleners, Thijs (1)
-
Najm, Majdi_R Abou (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Stem water potential (Ψstem) is a key indicator for assessing plant water status, which is crucial in understanding plant health and productivity. However, existing measurement methods for Ψstem, characterized by destructiveness and intermittency, limit its applicability. Microtensiometers, an emerging plant-based sensor, offer continuous monitoring capabilities and have shown success in certain vine and tree species. In this study, we investigate the efficacy of microtensiometers ability to monitor the Ψstemof cotton (Gossypium hirsutumL.) under three distinct irrigation treatments in Maricopa, Arizona, an extremely hot, arid environment. We analyze the diurnal dynamics of Ψstemacross the irrigation regimes and compare these measurements with midday leaf water potentials (Ψleaf) obtained using a dewpoint potentiometer. Our results demonstrate that the microtensiometer-derived Ψstemclosely follows known diurnal patterns of Ψleaf, tracking with vapor pressure deficit (VPD) and responding to variations in irrigation levels and soil moisture content. Time cross-correlation analysis reveals an 80-minute lag in Ψstemresponse to changing VPD under non-water limiting conditions, which shortens under water-limiting conditions. Additionally, we establish a robust linear relationship (R2adj = 0.82) between Ψstemand Ψleaf, with this relationship strengthening as water availability decreases. Notably, we observe mean gradients of 1.2 and 0.06 MPa between soil vs. stem and stem vs. leaf water potentials, respectively. Moreover, Ψstemdata proves to be more sensitive in distinguishing between irrigation treatments earlier in the growing season compared to Ψleaf, leaf temperature and leaf gas exchange parameters. These findings highlight the utility of microtensiometers as valuable tools for monitoring water status in smaller-stemmed row crops such as cotton.more » « less
-
Stewart, Ryan D; Flury, Markus; Ajami, Hoori; Anderson, Ray G; Green, Timothy R; Jin, Yan; Patrignani, Andres; Shillito, Rose; Zhang, Wei; Najm, Majdi_R Abou; et al (, Vadose Zone Journal)Abstract The vadose zone—the variably saturated, near‐surface environment that is critical for ecosystem services such as food and water provisioning, climate regulation, and infrastructure support—faces increasing pressures from both anthropogenic and natural factors, including changing climatic conditions. A more comprehensive understanding of vadose zone processes and interactions is imperative to effectively address these challenges and safeguard water and soil resources. This review outlines selected key issues, knowledge gaps, and research opportunities across six thematic sections. Each section presents a problem statement, a summary of recent innovations, and a compilation of emerging challenges and study opportunities. The selected topics include scaling and modeling of vadose zone properties and processes, soil moisture monitoring initiatives, surface energy balance, interplay between preferential water flow paths and biogeochemical processes, interactions between fires and vadose zone dynamics, and emerging contaminants and their fate in the vadose zone. This overview is intended to serve as a compendium of vadose zone science that encompasses both insights gained from prior research and anticipated needs for the coming years.more » « lessFree, publicly-accessible full text available July 1, 2026
An official website of the United States government
